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The problem

Assumptions: • Low temperature

• Arbitrary interaction strength

• No spin

• Fermions (optional)

• Galilean invariance (optional)

How fast a system of identical 1D particles comes to thermal equilibrium?



Outline

• Luttinger liquid: low temperature theory of 1D systems

• Two relaxation times in one dimension

• Relation to experiments with quantum wires

• Phenomenological (Luttinger-liquid) theory of the equilibration rate

• Comparison with the microscopic calculations



Interacting fermions in one dimension: Luttinger liquid

Particle-hole excitations become acoustic bosons

Luttinger liquid theory describes the low-energy properties of one-dimensional 

electron systems at any interaction strength.

q

Eq = h̄v|q|



Energy and momentum of a Luttinger liquid

N is the total number of particles, J is the 

current quantum number:

µL

µR

Hamiltonian:

Momentum:



Equilibrium state of a uniform 1D system

In the absence of disorder, collisions between particles conserve momentum.

As a result the Gibbs distribution has the form

wi = exp

(
−Ei − uPi

T

)

The distribution is fully described by the temperature T and velocity u.



Equilibrium state of a Luttinger liquid

1. Distribution of the bosons in equilibrium:

2. Distribution of J:

In thermal equilibrium, u is the drift (center of mass) velocity: vd =
j

n

In the center of mass frame, � � 0.

A sharp peak at J =
pFL

πh̄vJ
u



Two relaxation times

Quadratic Hamiltonian: 

No relaxation

Relaxation of bosons (particle-hole excitations)

• Relaxation rate:

• Relaxation of J

(backscattering)

τ−1b ∝ Tα

Bosons equilibrate much faster than J



1D system at long time scales

The bosons are always in equilibrium with each other:

u �= 0, J �= 0

but not yet with the system as a whole:

Slow relaxation to full equilibrium:

τ−1 ∝ e−EF/T

u̇= −u

τ
, J̇ = −J

τ

t > τ � τb

At weak interactions

What is the relaxation rate at arbitrary interactions?

P =
πLT2

3h̄v3
u+ pFJ = 0



Motivation: Conductance of quantum wires

Cronenwett et al., 2001

1. Good quantization of conductance 	� �
��	



at  � → 0.

2. Interesting corrections develop at  �  0.



Origin of the corrections to conductance: Backscattering

Correction to the conductance is determined by the rate of backscattering of

right-moving electrons in the wire ṄR = J̇/2

It can be expressed in terms of the relaxation time � as 

G =
e2

h



1− π2

3

(
T

vpF

)2
L

L+2vτ





[KM and A. V. Andreev,  PRL 107, 056402 (2011)]

I =
e2

h
V + eṄR



εp
τ−1 = τ−10 e−EF /T

p

ε(Q)

Q

The hole moves in small random steps in momentum space, δQ ∼ T

vF

∂tf = −B

2
∂Q

[
ε′(Q)
T

+ ∂Q

]

f
Such diffusion is described by 

the Fokker-Planck equation:

Its solution enables one to find the prefactor τ−10 ∝ T3/2

Scattering of a hole near the bottom of the band

Evaluation of the equilibration rate at weak 

interactions



Arbitrary interactions: Mobile impurity in a 

Luttinger liquid

D

Linearized spectrum near ��

hole

The bandwidth D is in the range T � D � EF

At non-weak interactions, fermions with linear spectrum form a Luttinger liquid

The hole (dressed by interactions) becomes a mobile impurity

[cf. Ogawa, Furusaki & Nagaosa 1992, Castro Neto & Fisher, 1996]



Mechanism of equilibration

2kFkF0

The hole moves in momentum space by 

absorbing one boson and emitting another

The typical momentum of a boson is small

Q ∼ T

v
� kF

The hole motion is diffusive Fokker-Planck equation

∂tf = −B

2
∂Q

[
ε′(Q)
T

+ ∂Q

]

f

�(�, �) is the occupation probability of the hole; � is the diffusion constant



Equilibration rate from Fokker-Planck equation

2kFkF0

At low temperature the hole is in 

equilibrium with the nearest boson branch

f = e−
ε(Q)− h̄uQ

T , Q < kF

f = e−
ε(Q)− h̄u(Q−2kF )

T , Q > kF

Solving the Fokker-Planck equation with these boundary conditions, 

we indeed find 

u̇= −u

τ
with

1

τ
=

3 h̄k2FB

π2
√
2πm∗T

(
h̄v

T

)3
e−∆/T

∆= ε(kF ), m∗ = − h̄2

ε′′(kF )
Activation energy effective mass



Evaluation of the diffusion constant

B =
∑

δQ

δQ2WδQ

��� is the rate of scattering 

from state � to � + ��

2kFkF0

q1 q2

Golden rule:

WδQ =
2π

h̄

∑

q1q2

|tq1q2|2δq1,q2+δQ δ(vq1−v|q2|)Nq1(Nq2+1) ∝ |tδQ/2,−δQ/2|2

Energy of the hole: ε(Q,n) = ε(Q,n0)+(∂nε)δn+
1

2
(∂2nε)(δn)

2+ . . .

Density fluctuation: δn ∝
∑

q

√
|q|(bq + b

†
−q)

tq1q2b
†
q2bq1 tq1q2 ∝

√
|q1q2|

WδQ ∝ δQ2
Bosons are thermally excited, δQ ∼ T/v



Resulting diffusion constant

[cf. Castro Neto & Fisher, 1996]B = χT5

Two additional contributions to �

χ =
4π3n20

15h̄5m2v8

(

∆′′+
∆′2

m∗v2
− 2v

′

v
∆′

)2

∆′ =
d∆

dn
, ∆′′ =

d2∆

dn2
, v′ =

dv

dn



Microscopic theory: Weak interactions

Three-particle collisions are obtained 

in second order in interaction strength

Two-particle collisions do not change the momenta of 

the electrons because of the conservation laws

The expression for the equilibration rate is recovered if the energy of the 

hole is calculated in second order in interactions:

∆ ≈ EF + δ1∆+ δ2∆



Microscopic theory: Strong interactions

Kinetic energy vs. Coulomb repulsion:

Strong repulsion forces (Wigner) crystallization of the system:

This image cannot currently be displayed.

Excitations are phonons with acoustic spectrum



Equilibration of 1D Wigner crystal

At low energies the phonons coincide with 

the bosons in the Luttinger liquid theory

q

Eq = h̄v|q|

Coupling of a high-energy phonon with the acoustic ones is accounted for 

microscopically by expansion in inverse interaction strength

χ =
4π3[(∂nωπ)∂nv2 − v2∂2nωπ + ω′′π(∂nωπ)2n−2]2

15 h̄3m2v12

(same result as in Luttinger liquid theory)



Integrable models

Calogero-Sutherland model: inverse-square repulsion V (x) =
A

x2

Lieb-Liniger model: bosons with �-function repulsion V (x) = Aδ(x)

No three-particle collisions in integrable models.  

There should be no equilibration 

τ−1 = 0

Using the known expressions for the excitation energies, we indeed find

χ = 0



Summary

Equilibration of an interacting 1D system 

involves excitations passing between the right-

and left-moving branches

At low temperatures, the equilibration rate is 

exponentially small 2kFkF0

1

τ
=

3h̄k2FT
5χ

π2
√
2πm∗T

(
h̄v

T

)3
e−∆/T

The prefactor can be expressed in terms of the excitation spectrum

χ =
4π3n20

15h̄5m2v8

(

∆′′+
∆′2

m∗v2
− 2v

′

v
∆′

)2

∆


